Search results for "island of inversion"
showing 10 items of 17 documents
Identification of the crossing point at N=21 between normal and intruder configurations
2017
R. Lica et al. -- 6 pags., 3 figs. -- Open Access funded by Creative Commons Atribution Licence 4.0
Spin and Magnetic Moment ofMg33: Evidence for a Negative-Parity Intruder Ground State
2007
We report on the first determination of the nuclear ground-state spin of $^{33}\mathrm{Mg}$, $I=3/2$, and its magnetic moment, $\ensuremath{\mu}=\ensuremath{-}0.7456(5)\text{ }{\ensuremath{\mu}}_{N}$, by combining laser spectroscopy with nuclear magnetic resonance techniques. These values are inconsistent with an earlier suggested 1 particle-1 hole configuration and provide evidence for a 2 particle-2 hole intruder ground state with negative parity. The results are in agreement with an odd-neutron occupation of the $3/2\text{ }[321]$ Nilsson orbital at a large prolate deformation. The discussion emphasizes the need of further theoretical and experimental investigation of the island of inver…
Shell evolution of $N=40$ isotones towards $^{60}$Ca: First spectroscopy of $^{62}$Ti
2020
7 pags., 4 figs., 1 tab.
Charge radii of neon isotopes across the sd neutron shell
2011
We report on the changes in mean square charge radii of unstable neon nuclei relative to the stable Ne-20, based on the measurement of optical isotope shifts. The studies were carried out using collinear laser spectroscopy on a fast beam of neutral neon atoms. High sensitivity on short-lived isotopes was achieved thanks to nonoptical detection based on optical pumping and state-selective collisional ionization, which was complemented by an accurate determination of the beam kinetic energy. The new results provide information on the structural changes in the sequence of neon isotopes all across the neutron sd shell, ranging from the proton drip line nucleus and halo candidate Ne-17 up to the…
Spectroscopic studies with the PRISMA-CLARA set-up
2010
The large solid angle magnetic spectrometer for heavy ions PRISMA, installed at Laboratori Nazionali di Legnaro (LNL), was operated up to the end of March 2008 in conjunction with the highly efficient CLARA set-up. It allowed to carry out nuclear structure and reaction mechanism studies in several mass regions of the nuclide chart. Results obtained in the vicinity of the island of inversion and for the heavy iron and chromium isotopes are presented in this contribution. The status of the new focal plane detectors specifically designed for light ions and slow moving heavy ions is also reported.
“Safe” Coulomb Excitation ofMg30
2005
We report on the first radioactive beam experiment performed at the recently commissioned REX-ISOLDE facility at CERN in conjunction with the highly efficient γ spectrometer MINIBALL. Using Mg-30 ions accelerated to an energy of 2.25 MeV/u together with a thin Ni-nat target, Coulomb excitation of the first excited 2(+) states of the projectile and target nuclei well below the Coulomb barrier was observed. From the measured relative deexcitation γ-ray yields the B(E2;0(gs)(+)R 2(1)(+)) value of Mg-30 was determined to be 241(31)e(2) fm(4). Our result is lower than values obtained at projectile fragmentation facilities using the intermediate-energy Coulomb excitation method, and confirms the …
A step further in the A = 33−35, N ≃ 21, island of inversion: the structure of 33Mg
2003
Experimental indications have been found in the seventies for the deformation of neutron-rich A ≃ 32 nuclei [1]. This could be explained by Hartree-Fock calculations, predicting deformed configurations in the ground state of nuclei in the A = 33−35, N ≃ 21 mass region. This exotic region, called the island of inversion [2], knows a renewed interest since it can be now experimentally accessible for detailed studies.
Nuclear Charge Radii ofMg21−32
2012
Charge radii of all magnesium isotopes in the sd shell have been measured, revealing evolution of the nuclear shape throughout two prominent regions of assumed deformation centered on (24)Mg and (32)Mg. A striking correspondence is found between the nuclear charge radius and the neutron shell structure. The importance of cluster configurations towards N=8 and collectivity near N=20 is discussed in the framework of the fermionic molecular dynamics model. These essential results have been made possible by the first application of laser-induced nuclear orientation for isotope shift measurements.
Measurement of the Spin and Magnetic Moment ofMg31: Evidence for a Strongly Deformed Intruder Ground State
2005
Unambiguous values of the spin and magnetic moment of $^{31}\mathrm{M}\mathrm{g}$ are obtained by combining the results of a hyperfine-structure measurement and a $\ensuremath{\beta}$-NMR measurement, both performed with an optically polarized ion beam. With a measured nuclear $g$ factor and spin $I=1/2$, the magnetic moment $\ensuremath{\mu}(^{31}\mathrm{M}\mathrm{g})=\ensuremath{-}0.88355(15){\ensuremath{\mu}}_{N}$ is deduced. A revised level scheme of $^{31}\mathrm{M}\mathrm{g}$ ($Z=12$, $N=19$) with ground state spin/parity ${I}^{\ensuremath{\pi}}=1/{2}^{+}$ is presented, revealing the coexistence of 1p-1h and 2p-2h intruder states below 500 keV. Advanced shell-model calculations and th…
Surveying the N=40 island of inversion with new manganese masses
2012
High-precision mass measurements of neutron-rich 57−66Mn and 61−63Fe isotopes are reported. The new mass surface shows no shell closure at N=40. In contrast, there is an increase of the two-neutron separation energy at N=38. This behavior is consistent with the onset of collectivity due to the occupation of intruder states from higher orbits, in analogy with the well known “island of inversion” around N=20. Our results indicate that the neutron-rich Mn isotopes, starting from 63Mn, are most likely within the new island of inversion. From the new mass surface, we evaluate the empirical proton-neutron interaction and the pairing gap, both playing a significant role in the structural changes i…